
DESIGN AND IMPLEMENTATION O F A DISTRIBUTED REAL-TIME IMAGE
PROCESSING SYSTEM

D. M. Wu, L. Guan, G. Lau and D. Rahija

Depart men t of Electrical Engineering
The University of Sydney

Sydney NSW 2006 Australia

ABSTRACT

New development in the design and implementation of a
distributed, real-time image processing system is presented
in this work. The system uses an IBM personal computer
as the front end to a remote computer via the Internet. The
standard TCP/IP networking protocols are utilised to link
the IBM-PC and high performance remote devices such as
transputer networks and super-computers. The access to
the powerful remote computers enables the system to com-
plete complex image processing tasks in real-time. During
processing, the image is transferred to the remote machine
and then transferred back to the P C for display. The sys-
tem serves as a prototype for a full-feature image processing
and analysis package, as well as a programming platform
for the research and development of new image processing
algorithms.

1. INTRODUCTION

The introduction of powerful microcomputers in recent years
has made personal image processing systems affordable to
the individual researchers. Over the years, microcomput-
ers have significantly improved in the area of computational
performance, storage and display. These features are there-
fore ideal as a platform for inexpensive image processing
systems [l, 21. Although these systems functionally satisfy
the requirements of most general purpose image process-
ing, real-time applications of such systems are limited by
the computing capability of the microcomputers.

This paper presents the design and implementation of
a distributed, real-time image processing system using an
IBM-based personal computer (IBM-PC) with access to a
powerful computer via Internet The advantage of using such
a configuration is the sharing of a high performance central
computer or a processor network, which is publically acces-
sible, between a group of users. This provides each user
with substantial boost in processing power with minimum
cost.

The system serves as a prototype for a variety of full-
feature image processing and analysis applications, as well
as a programming platform for the research and develop-
ment of new algorithms. Since the system is non-trivial,
the architecture of the software must be well structured and

clearly defined. This goal is achieved using object-oriented
design methodologies. The paradigm enables a more effi-
cient way of modelling real life situations and hence more
robust systems can be built.

2. SYSTEM OVERVIEW

The system, VisionLab, is an image processing system to be
operated on a IBM-PC with a Ethernet network expansion
card. The PC is used to control the overall performance
of the system, to manipulate graphical display and to per-
form a number of simple processing tasks. The system also
provides capabilities in networking so that a remote com-
puter system is controlled by the IBM-PC via the Internet.
This enables more elaborate, computationally intensive al-
gorithms such as image analysis, feature extraction and pat-
tern recognition to be executed in real time. With the ad-
vances in today’s networks, the overhead in data transfers
is small compared to the benefits acquired by using a high
performance computer. Furthermore, the cost of setting up
such a system is significantly lowered when compared to the
cost of purchasing a high performance computer dedicated
to an image processing application.

VisionLab is a versatile image processing system. Useful
features provided by VisionLab are summarised follows:

1. The system supports remote access to a high end
computer via the Internet using the TCP/IP pro-
tocols. This ensures flexibility in choosing the re-
mote high performance computer, and the execution
of complex image processing tasks in real-time.

2. Interactive operations are provided so that commands
can be selected once the image is opened.

3. The system allows multiple images to be concurrently
processed in the background, with or without access
to the remote computer. This allows the user to at-
tend to other applications while a batch file is being
processed. In case of network congestion, the user
can locally work on another image while waiting for
a response from the network.

4. The system has a batch mode so that a set of com-
mands can be pre-programmed and executed without
interaction with the user.

0-8186-7123-8/95 $4.00 0 1995 IEEE
266

5. A history list of all operations performed on the image
is maintained. This enables the user to revert to any
state of the image after a sequence of operations.

Apart from setting up at system which is useful in many
practical situations, a primary goal is to develop a software
toolkit for developing new image processing algorithms. Em-
phasis is placed on providing a standard interface between
modules within the software architecture so that code seg-
ments devised by different people can be easily integrated
into the system. The standard interface also provides ab-
straction to the underlying hardware and hence aids the
representation and description of the data structures for
the programmer.

3. PC SYSTEM DESIGN AND
IMPLEMENTATION

VisionLab runs on most IBM PC computers or compati-
bles with a Intel 80386 or better processor, minimum of 8
MByte DRAM. Other peripherals include a high resolution
SVGA monitor and a Ethernet network expansion card for
LAN access. The network connection between the remote
computer and the PC system is thus provided by the Ether-
net network expansion card. The remote computer can be
any computer which is connected to the Internet, running
TCP/IP network software to allow users to remotely access
and operate the computer [4, 51. Image data are transferred
to the remote computer for processing, and then transferred
back to the PC for display.

The design of the software is divided into two sections:
the local IBM-PC and the remote computer. Since many
high-end machines are already connected to the network
with installed networking software, most of the effort in the
design is focussed on the local PC. One of the major hur-
dles associated with designing software for the IBM-PCs
lies in the architecture of the Intel 80x86 microprocessor.
The Intel microprocessor dlesigners, in an attempt to pro-
vide compatibility with their older generation processors,
somewhat restricts the development of their newer proces-
sors [6]. The compatibility requirement restricts the avail-
able address range to 1 MByte, and severely limits the full
potential of the processor.

3.1. PC Operating System

As a direct, consequence, one of the major problems with
PCs is memory management. Programs can only directly
access the 1 MByte base memory, known as conventional
memory. The extra memory can only be accessed if the
processor is switched into protected mode and thus enabling
the extra address lines. This function is usually supplied
by the operating system. However, the interface for this
function varies between different systems. Consequently,
an important issue in the design is to select an appropriate
operating system which provides an easy method for this
mode transition.

Other considerations for selecting an operating system
for the development platform include support for graphical

user interface and concurrent programming. There are a
few operating systems available for the IBM-PC which sat-
isfies these requirements such as OS2, Windows NT, XWin-
dows, and MS-Windows. The MS-Windows operating sys-
tem is chosen since it is the only system which provides
most of the desired functions without large demands on
resources such as disk space and memory. However, MS-
Windows is not an independent system and requires MS-
DOS for most of its underlying system functions. It there-
fore still exhibits problems with memory management as
with traditional DOS systems. Fortunately, Windows au-
tomatically switch the processor into protected mode when
it is invoked. As a result, it provides services to access ex-
tended memory up to 16 MByte which is plentiful for our
applications. I t also provides multitasking, although not in
the preemptive form. However, a solution to overcome this
has been devised with some extra low-level software.

The MS-Windows operating system not only solves the
memory access problem, it also provides a user friendly sys-
tem with all applications behaving in similar ways. Thus
time required to learn how to use a Windows compliant
application is reduced. The Windows environment also
provides device independency. That is, programs can run
in many hardware configurations without recompilation of
code.

The Windows operating system also supports network-
ing using the sockets paradigm introduced by the Berke-
ley Software Distribution of UNIX. This provides programs
with an TCP/IP protocol interface and reduces the com-
plexity of the software at the application level. On an ab-
stract level, the programmer treats the interface as a port
where information can be transferred and received. More
importantly, this is also the common protocol employed by
all computers connected to the Internet.

3.2. Object-oriented Design

One of the main objectives of the system is to design a
programming platform for developing new algorithms. To
achieve such a platform, the architecture of the software
must be well structured and clearly defined. Modularisation
of sub-components of the software is hence a main issue.
This aids the researcher in understanding the overall system
without being concerned with the low-level details such as
hardware dependencies. As a result, some formal design
approach is used to manage the overall system. For this
system, the object-oriented design methodology is used.

The object-oriented design methodology has had con-
siderable exposure in the recent years [7]. Indeed, it promises
a more efficient and robust way of thinking and modelling
real life situations. Object-oriented design is a technique
that pushes to the extreme a design approach based on ab-
stract data types. It has become popular in the past few
years due to the appearance of new programming languages
that support an adequate notation to map the design to the
implementation. Another factor which contributed to its
popularity is that the methodology raises the expectation
for producing reusable software components [8,9].

267

In an object-oriented system, a direct correspondence
between the real-world and objects is maintained so that
they do not lose their integrity and identity. The technique
allows software to be constructed out of objects that have
a specified behaviour. Objects themselves can be built out
of other objects. This can be extended infinity as long as
the associations can be visualised conceptually.

The software design and implementations is divided into
two sections. For the IBM-PC, object oriented design pro-
vides a solution for building such systems. Initially, the
classes and their most fundamental relationships are found.
A minimal set of operations are then specified €or each class
which in turn are refined by specifying their dependencies
on other classes. Inheritance is introduced to maximise
reusability of common sections where appropriate. The
software design for the IBM-PC is greatly influenced by the
Object Windows Library (OWL) provided by the Borland
compiler tools [lo]. OWL provides an interface between the
application and the operating system and hence relieves the
programmer of the low level details which are system de-
pendent. The library is a powerful set of building blocks
for constructing Windows applications with full-featured
user interface. I t uses the object- oriented paradigm to
encapsulate the Windows Application Programming Inter-
face (API), insulating the programmer from the details of
Windows programming. Applications communicate with
the operating system via messages.

As the IBM-PC serves as the front end to the distributed
system, the software is significantly more complex com-
pared with that of the remote computer. Therefore, empha-
sis is placed on the software architecture for the IBM-PC.
The software system is schematically illustrated in Figure
1. At the centre of the system is the Event Handler. This
is responsible for handling Windows system messages and
dispatching them to the appropriate manager for further
processing. The main object types of the syst,em are the
Multi- Window Manager, Process Schedtnler, Network Man-
ager, History Manager and the Batch Job Manager.

The Multi-Window Manager handles the responsibility
of a Multi-Document Interface (MDI) which includes open-
ing and displaying multiple images in the application’s win-
dow. It also mediates the users’ requests for operations on
a particnlar image. The operation can be performed either
locally, or carried out on the remote computer during a net-
work session. A network manager asynchronously receives
responses from the packet driver via the Sockets interface
and controls the communication between the local device
and the remote device. Operating asynchronous provides
the flexibility for the user to attend to other tasks using the
local PC when the remote device is busy.

The Process Scheduler is responsible for subdividing
each processing task into slices so that multiple tasks can
be executed concurrently. I t uses a round-robin scheduling
scheme with all processes running at the same priorit,y. This
imposes a fixed time on the amount of continuous processor
time that may be used by a process. If a process exceeds the
time limit, it is preempted from its processor and places at
the end of the list of process waiting for the processor. This

object basically handles the task of the kernel in an operat-
ing system. This is necessary because Microsoft Windows
does not support preemptive multi-tasking.

The History Manager and Batch Manager are objects
which enhances the usability of the system. The History
Manager is responsible for saving an image to disk before
an operation is performed on the image. This enables the
user to recall the state of the image after any previous op-
erations, which is extremely useful when comparing the ef-
fects of a particular set of operations. The Batch Manager
allows the user to build custom functions from a set of ba-
sic commands provided by the system. As a result, more
complex operations can be devised without recompiling the
software. The Batch Manager mediates the batch text file
between the Editor, Process Scheduler and Parser. The
Text Editor provides the tools for editing the batch script
while the Parser translates the text file into the internal
representation for execution.

There are three main data structures in the system
which included the Image, Batch Script and History Stack
objects. The following paragraphs describe each of these
data structures in detail.

The Image object contains the display and internal rep-
resentations of the image. All operations which may be
performed on the image are specified by the methods of the
object. This prevents the data from being mis-used. The
display representation conforms to the Device Independent
Bitmap (DIB) structure defined by the operating system.
A DIB consists of two distinct parts: a structure which de-
scribes the dimensions and colours of the bitmap, and an
array of bytes specifying the pixels of the bitmap. The inter-
nal represent,ation is related to data structures directed to
image processing. For instance, after segmentation is per-
formed on an image, it can be described as a set of regions.
The boundary of the region can be completely specified by
chain codes. These representation are useful for further pro-
cessing on the image such as classification. In addition, the
class serves as a basis for future extensions of functionalities
using inheritance relationships.

The Batch Script is a sequence of batch commands.
Each command has the syntax

macro [Files ... 1

The data structure stores the lists of image operations as
specified by the macro, together with the list of images that
the macro should apply. The structure is used by the Pro-
cess Scheduler for execution.

Finally, the History Stack contains the temporary file-
names that the History Manager used for saving an image
to disk before an operation is performed on the image. The
stack is implemented using a circular bounded buffer. When
the buffer is filled, the filenames at the top of the buffer are
discarded, together with the corresponding images which
have been previously saved to disk by the manager. Con-
sequently, the History Manager only keeps track of a fixed
number of most recent steps.

268

4. DISTRIBUTIED SYSTEM DESIGN

On the remote computer, the processing functions are in
the form of commands. Each function is built on the model
of a standard UNIX filter. The input formats to the com-
mand are specified by the individual commands, depending
on their requirements. The P C generates commands to ex-
ecute these functions remotely using the TCPI IP “exec”
service. The service executes the command after verifying
authentication, it mediates the transfer of input and output
data before and after the command. This relieves the re-
sponsibility of setting up a module at the remote computer
that handles the data transfers.

To establish network connection for a distributed com-
puting environment between the host computer and the PC
system, designers try to make each distributed application
behave as much as possible like the non-distributed version
of the program. In essence, the goal is to provide an envi-
ronment that hides the geographic location of the comput-
ers and services, making them appear to be local. The first
step in distributed programming is to define the protocol
for communications between the computers. In the system,
the TCP/ IP protocols are chosen because the remote ma-
chine provided TCP/ IP services which allow users to login
to the server remotely. ‘rCP/IP allows computers of all
sizes, from many different computer vendors, running to-
tally different operating systems to commuiiicate with each
other. It forms the basis for the world-wide Internet which
is a wide area network of‘ more than a million computers
that literally span the globe.

Whenever an application program uses TCP/ IP to com-
municate it must interact with the operating system to re-
quest service. From a programmer’s point of view, the rou-
tines supplied by the operating system define the interface
between the application and protocol software. Because
TCP/ IP is heavily influeliced by the UNIX operating sys-
tem, the application interface extends the conventional 1 / 0
functions available on UNIX. The result became known as
Socket Interface.

The Socket abstraction is analogous to a file descriptor
in the conventional I/O. Once a socket has been created, it
can be used to wait for a incoming connection or to initiate
a connection. The way the socket is used is entirely deter-
mined by the application. In this system, a wrapper class is
built around the Socket Interface so that an object oriented
interface is created. With is configuration, the Socket class
hides the details of handling sockets as a conventional 1/0
file descriptor, rather taking the liteial meaning of a socket,
as an access point for the user, where data transfer takes
place. The Network Manager thus handles and manages a
set of sockets as required by the application.

The system is being used as the development platform
for a number of real-time image processing projects. One of
the most important is digital mammogram analysis. Due to
the subtle nature of the microcalcifications, the very high
resolution required in the digitization results in 32 Mbytes
for each digital mammogram. It is a real challenge to pro-
cess the image in real-tirne or near real-time. The pro-

cessing algorithm is implemented on a Cray supercomputer
which network is connected to the front-end PC at the Uni-
versity of Sydney via the Internet. A near lossless compres-
sion scheme is used to reduce the amount of data before
transmission. Initial results show that the system can pro-
vide real-time performance. Detailed report will be avail-
able at the time of conference presentation.

5. CONCLUSIONS

This paper presents the design and implementation of a
IBM-PC based distributed image processing system. The
set-up provides a means for real-time image processing by
using a remote host computer for computationally intensive
tasks. The PC is used to mediate the data transfer of images
between the local and remote devices and for the display of
the images. In addition, classical image processing oper-
ations such as spatial filtering and enhancement are also
implemented on the PC. As a result, an alternative method
is provided for real-time image processing which was only
available for more expensive systems.

6. REFERENCES

[l] R.L. Miller, “High resolution image processing on
low-cost microcomputer,” International Journal of
Remote Sensing, vol. 14, no. 4, pp. 655-667, 1993.

[2] R.A. Schowengerdt and G. Mehldau, “Engineering a
scientific image processing toolbox for the Macintosh
11,” International Journal of Remote Sensing, vol. 14,
no. 4, pp. 669-683, 1993.

[3] Inmos Ltd., “Some issues in scientific language appli-
cation porting and farming using transputers,’’ The
Transputer Development and Systems Datubook, In-
mos Ltd., 1989.

[4] D.E. Comer and D.L. St,evens, Internetworking with
TCP/ IP Vol 111: Client-Server Programming and Ap-
plications, prentice-Hall, Englewood Cliffs, New Jer-
sey, 1993.

151 W.R. Stevens, TCP/ IP Illustrated, Volume i: The
Protocols. Addison- Wesley Publishing, Reading, Mas-
sachusetts, 1994.

[G] B. Kauler, Windows assembly language and systems
programmzng, Prentice-Hall, Englewood Cliffs, New
Jersey, 1993.

[7] J. Martin and J.J. Odell, Object-Oriented Analysis
and Design, Prentice-Hall, Englewood Cliffs, New
Jersey, 1990.

[SI B. Stroustrup, B., The C++ Programming Language,
2nd Ed., Addison-Wesley, 1991.

[9] C. Ghezzi, M. Jazayeri and D. Mandrioli, Fundamen-
tals of Software Engineering, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1991.

[lo] Borland International, Inc., Borland Object Windows
for C+ +, Borland International, Inc., 1993.

269

